Es mostren els missatges amb l'etiqueta de comentaris Einstein. Mostrar tots els missatges
Es mostren els missatges amb l'etiqueta de comentaris Einstein. Mostrar tots els missatges

dijous, 25 de març del 2021

HI HA UNA RELACIÓ ENTRE RELATIVITAT I ASTROLOGIA?

 Hola xics i xiques, intrigats i intrigades per aquest títol?


Si voleu saber de què va i de pas comprendre un poc millor la relativitat especial, pegueu una miradeta a aquest vídeo.

Val la pena i no és llarg!!!

divendres, 12 de febrer del 2016

dissabte, 16 de gener del 2016

La teoría de cuerdas, ¿Ciencia o pseudociencia?

Me parece muy interesante compartir este artículo con vosotros ya que trata uno de los problemas más importantes de la física de hoy, la unificación de la teoría de la relatividad y de la física cuántica.
La relatividad, por un lado, explica con éxito la fuerza gravitatoria mientras que la física cuántica explica el resto de fuerzas de la naturaleza: la fuerza nuclear débil, la fuerza nuclear fuerte y el electromagnetismo.                
La teoría de cuerdas es uno de los modelos teóricos que unifican ambas teorías y que podría ser un modelo estándar de explicación del universo aunque el problema es que actualmente ha sido imposible demostrar su validez.
                
A continuación os paso el artículo y debajo el enlace por si queréis leerlo en la web donde se encuentra directamente:
                                                                          
El gran problema de la ciencia moderna desde mediados del siglo XX ha sido cómo dar coherencia a las dos grandes teorías vigentes y aparentemente incompatibles que explican el universo: la Relatividad, que describe los objetos más grandes del cosmos, y la mecánica cuántica, que explica el mundo sub-atómico.
Mientras que la teoría de la relatividad describe el funcionamiento de la gravedad, la mecánica cuántica hace coherentes las fuerzas electromagnéticas, nuclear débil y nuclear fuerte. Pero no sabe qué hacer con la fuerza gravitatoria. Le sobra.
Si se realiza una regresión en la historia de nuestro universo, aproximándose paulatinamente al momento del Big Bang, es decir, si se imagina un proceso de implosión donde el tamaño se contrae, las distancias se acortan y aumenta la temperatura, se llegaría a un punto donde las influencias de ambas teorías se encontrarían una frente a la otra, provocando la gran debacle. Sería como tener dos códigos de circulación completamente diferentes para un mismo territorio. Aunque esto es algo que ya ocurre en las situaciones más extremas de la cosmología, como el estudio de los agujeros negros.
Es indispensable, por lo tanto, crear un código común. El modelo estándar de la física tiene diferentes alternativas. Una de ellas es la teoría de cuerdas, que muchos consideran la mejor candidata a ser la teoría del Todo, aquella que ha de superar las contradicciones entre física cuántica y Relatividad.
Según la teoría de cuerdas, la base de la materia no son las partículas, sino unos filamentos muchísimo más pequeños que vibran de diferentes maneras. Cada una de esas vibraciones será la clave para que aparezca una partícula determinada.
En términos sencillos, se puede resumir el dilema como sigue: el modelo estándar de la física, al describir la realidad más elemental mediante partículas y sus incesantes interacciones, se topa con un mundo inestable, desequilibrado e incoherente; al transformar dichas partículas en cuerdas, el mundo sub-atómico mantiene la vibración de que hace gala en los experimentos, pero ya no hay inestabilidad, sino una superficie más tranquila formada por hilos vibratorios donde la fuerza de la gravedad también encuentra su sitio.
Unas ecuaciones de Euler, uno de los grandes matemáticos del s. XVIII, fueron el punto de partida para el nacimiento de la teoría de cuerdas: en 1968, el físico italiano Gabriele Veneziano descubrió que aquella fórmula, que hasta entonces se había considerado una curiosidad matemática, describía la fuerza nuclear fuerte descubierta unos decenios atrás.
Posteriormente, el estadounidense Leonard Susskind pudo ir más allá y propuso que la ecuación de Euler hacía referencia a “algo” vibrante que se comportaba como un hilo elástico que se estiraba, se contraía y ondeaba.
Durante algunos años, la teoría de cuerdas no avanzó, debido a que sufría muchas anomalías matemáticas que impedían su concordancia. Había, además, dos grandes problemas al abordar este modelo: uno, exigía la existencia de una partícula sin masa, que se dio en llamar “taquión”, que no sólo era hipotética sino indetectable en cualquier experimento; y dos, hacía falta la existencia de diez dimensiones. Y esto, qué duda cabe, la hacía muy poco atractiva para la ciencia del momento.
Con todo, algunos se empeñaron en resolver aquel entuerto. En 1973, John Schwarz descubrió que la partícula sin masa permitía explicar la fuerza de la gravedad en el terreno cuántico. Se la denominó, así, “gravitón”.
En los años 80, surgieron cinco variantes de la teoría de cuerdas. Esto no habría sido demasiado problemático de no ser por un detalle: todas ellas resultaron ser igual de válidas. Por lo tanto, había que asumir que una de ellas describiría nuestro universo pero, entonces, ¿qué "otros" universos describían las cuatro restantes?
Este fue el gran rompecabezas a resolver durante años hasta que, en 1995, uno de los físicos y matemáticos más relevantes de hoy, Ed Witten, presentó su solución al enigma: no había cinco teorías diferentes, sino que, en realidad, eran cinco enfoques sobre un mismo concepto, como si estuviéramos en una habitación cubierta de espejos que reflejaran el mismo objeto desde diferentes perspectivas.
La solución de Witten se llamó teoría M. Y la teoría M aportaba cambios: el más importante, que existen 11 dimensiones. La dimensión añadida a las diez de las que se venía hablando permitía que las cuerdas se estiraran para formar una especie de membranas, las cuales podrían tener tres o más dimensiones. Con la energía suficiente, alguna de ellas podría alcanzar tamaños tan grandes como para albergar nuestro universo.
Es decir, que podríamos estar viviendo dentro de una membrana, algo así como si estuviéramos en una rebanada sacada de una barra de pan, y cada rebanada de dicha barra sería un universo paralelo. Entonces, la siguiente pregunta sería: ¿estaríamos atrapados o sería posible acceder al resto de rebanadas?
La teoría M cree que la respuesta está en la gravedad. Esta fuerza siempre ha sido un problema para los científicos, debido a que su debilidad es tan manifiesta respecto a las otras fuerzas del universo que tanta diferencia ha traído de cabeza a la ciencia. El nuevo enfoque cambiaba la perspectiva del problema: ¿realmente es tan débil o, sencillamente, aparenta serlo?
La teoría M dice que hay dos formas de cuerdas. Todo lo que forma el universo se compone de cuerdas abiertas, cuyos extremos están adheridos a la membrana tridimensional que lo contiene. Pero también existen unas cuerdas cerradas, y una de sus variedades es el gravitón. Al formar un círculo cerrado, esta cuerda no está atada a la membrana y es libre para escapar hacia las otras dimensiones. Esto diluye la fuerza de la gravedad, haciéndola así parecer más débil que el resto de fuerzas.
La gravedad sería, por tanto, la forma de contacto entre todas las dimensiones existentes. Esta es, por cierto, la idea sobre la que se elaboró el guion de Interstellar, una de las mejores películas de ciencia ficción de los últimos tiempos –precisamente porque todo lo que en ella aparece está justificado por argumentos científicos.
La teoría M ofrece también una explicación al origen del Big Bang. Algunos defensores de la teoría sugieren que no hubo un inicio: el Big Bang sería el resultado de un choque entre dos membranas, y tal acontecimiento no sería único, sino que se repetiría innumerables veces de manera impredecible.
Ahora bien, ¿cómo demostrar la existencia de otras dimensiones y membranas? A pesar de que una gran mayoría la considera pseudocientífica bajo el argumento de que no es falsable, sus defensores afirman que quienes así piensan se equivocan en la interpretación de la falsabilidad.
Desde la perspectiva de la actual física teórica, el cosmólogo Sean Carroll considera que el método científico, tal y como se lo concibe habitualmente, es demasiado simple para que siga siendo válido. El falsacionismo, dice, ha sido malinterpretado. Karl Popper lo postuló como una manera de distinguir la investigación científica de la no científica, pero eso “no significa que aquello para lo que no puedes demostrar una falsedad sea falso”.
Hay teorías que se antojan muy firmes para las cuales aún no han sido desarrollados los métodos de falsación, pero sería una insensatez descartarlas por un motivo que es ajeno a la verdad de la teoría, surgido de la incapacidad temporal de los seres humanos para exponerla experimentalmente.
Es el caso del multiverso o las dimensiones múltiples de que habla la teoría de cuerdas, por ejemplo. “En mi opinión”, dice Carroll, “si le pudieras preguntar a Karl Popper sobre ello, te diría que éstas teorías son perfectamente científicas”.
No parece serio, por tanto, que se dejen de lado tales ideas porque no es posible demostrar empíricamente la existencia del multiverso o porque no se han desarrollado los dispositivos para generar la suficiente energía con que acceder al nivel de las cuerdas.
La idea no es nueva. Ya Albert Einstein sabía de esto, y presumía de no necesitar confirmaciones experimentales para su teoría de la relatividad, en su seguridad de que las matemáticas no se equivocaban. Durante un tiempo se rechazó la relatividad porque se consideraba que no podía ser demostrada empíricamente. Cuando Arthur Eddington ideó la manera de  probar uno de los aspectos de la teoría, la desviación de la luz de las estrellas a causa de la masa solar, aprovechando el eclipse de 1919, los periodistas le preguntaron si estaba nervioso por conocer qué deparaba el experimento. Einstein dijo que en absoluto, pues sabía que el resultado iba a ser inevitablemente positivo.
Con todo, hay aspectos de la teoría de cuerdas que sí podrían ser demostrados en laboratorio. Así, se predice que las cuerdas pueden ser alteradas aplicando una cierta cantidad de energía. Ésta depende del radio de las dimensiones extra; a menor radio, más energía. El escenario más probable requiere aplicar 1019 GeV.
El inconveniente es que la energía máxima que es capaz de producir el ser humano a día de hoy es de unos 104GeV. Ello ocurre en el Gran Colisionador de Hadrones (LHC) del CERN donde, año tras año, se descubren estructuras cada vez más elementales de la materia.
Si, por otra parte, las dimensiones extra fuesen más grandes, la teoría prevé, debido a un incremento de la fuerza de gravedad, la aparición de minúsculos agujeros negros que sí podrían ser detectados por el colisionador de hadrones.
También sería posible detectar gravitones. El gran logro para la teoría de cuerdas sería, después de este descubrimiento, observar el momento preciso en que el gravitón, de repente, desaparece. Porque, si la Teoría M es correcta, el gravitón debe desvanecerse al pasar a otra dimensión.
Aunque la confirmación de que existen dimensiones extra tampoco sería una prueba definitiva de que la teoría de cuerdas es correcta. Sin embargo, el hallazgo daría el golpe de gracia al actual paradigma.
El modelo estándar falla cuando se trata de describir lo que pasa en el nivel de los quarks y gluones, que son la base de la materia según la cromodinámica cuántica, donde existe el modelo de cuerda cromodinámica, o de Lund, esencial para explicar las interacciones de gluones del modelo estándar. Pero no aporta nada a los intentos por unir la gravedad con el resto de fuerzas elementales.
La teoría de cuerdas, por su parte, ofrece métodos de cálculo que se ajustan mejor a ese ámbito de la realidad. Y, de hecho, se emplean en algunos experimentos del LHC. Y, aunque a día de hoy la teoría de cuerdas sólo se considera válida como método de cálculo, es posible que la superación de las contradicciones entre la Relatividad y la mecánica cuántica pase por trascenderlas en la visión de un universo como "sinfonía" donde cada vibración de cuerda origina un pedazo realidad.

Quién sabe, puede que la ciencia del futuro nos devuelva a la sabiduría de los antiguos, en una versión revisada de esa milenaria teoría que ha sido –¿y es?— la armonía de las esferas. 

dimarts, 1 de desembre del 2015

Observar más allá de la luz


         Me gustaría compartir con vosotros el siguiente video ya que nos muestra la importancia de las ondas gravitacionales. Como otros compañeros han puntualizado, se están realizando experimentos cuyo objetivo es la detección de dichas ondas. Si los científicos son capaces de observarlas, la predicción de Einstein en cuanto a la existencia de estas ondas gravitacionales sería correcta. En el caso contrario sería necesario replantearse los modelos explicativos que funcionan actualmente.

Además de estas cuestiones, la observación de ondas gravitacionales es muy interesante ya que nos puede permitir observar y escuchar cosas del universo sin necesidad de sonido ni de luz. De ahí que la búsqueda de las ondas gravitacionales sea tan importante para el avance de la física.

        A continuación os paso el enlace.

https://www.youtube.com/watch?v=WY-Orlj9Dzs

dissabte, 28 de novembre del 2015

El experimento que puede constatar o refutar a Einstein (y cambiar las leyes de la física)

Como sabéis hasta ahora hemos estudiado las ondas y la interacción gravitatoria. Aporto esta noticia porque abarca ambos campos, ya que se va a utilizar lo que se sabe hasta el momento de las ondas y la gravitación para demostrar si las predicciones de Einstein son, o no, correctas.


En la campiña italiana, cerca de Pisa, un gigantesco experimento está a punto de comenzar. Si concluye con éxito, los científicos podrán observar de forma directa, por primera vez, una de las grandes predicciones de Albert Einstein.Si fracasa, habrá que reconsiderar las leyes de física.
El experimento, conocido con el nombre de Virgo, tiene como misión descubrir uno de los más elusivos fenómenos astrofísicos.
"Puede que tengamos por primera vez la oportunidad de detectar las ondas gravitacionales en la Tierra", explica Franco Frasconi, investigador de la Universidad de Pisa y parte del equipo de Virgo.
"Esto sería una clara demostración de que lo que (Einstein) dijo hace 100 años es absolutamente correcto".
Ondas gravitacionales por todas partes
El 25 de noviembre de 1915 Albert Einstein presentó la versión final de sus ecuaciones del campo ante la Academia Prusiana de las Ciencias. Estas son la base de su teoría general de la relatividad, un pilar de la física moderna que ha transformado nuestra comprensión del espacio, el tiempo y la gravedad. Gracias a ella hemos podido entender muchas cosas: desde la expansión del Universo hasta el movimiento de los planetas y la existencia de los agujeros negros. Ya no hay certeza sobre las famosas huellas del Big Bang. Pero Einstein también propuso la presencia de ondas gravitacionales. Estas son, esencialmente, las ondulaciones de energía que distorsionan la estructura del tiempo y el espacio. Imagínate algo así como las ondas que se generan cuando lanzas una piedra a un charco de agua. Cualquier objeto con masa debería producirlas cuando está en movimiento. Incluso nosotros. Pero cuanto más grande es la masa y más dramático el movimiento, más grandes son las ondas.
Y Einstein predijo que el universo estaba repleto de ellas.

§  Las ondas son una consecuencia inevitable de la Teoría general de la relatividad

§  Su existencia ha sido inferida pero no verificada directamente

§  Son ondas en la estructura del espacio y el tiempo producidas por eventos cósmicos violentos

§  La aceleración de las masas produce ondas que se propagan a la velocidad de la luz.

Renovación prometedora

Si bien los astrónomos tienen evidencia indirecta de su existencia, nadie ha podido observar aún estas rarezas cósmicas.
"No me sorprende que no hayamos visto todavía ondas gravitacionales", le dice a la BBC Toby Wiseman, físico del Imperial College de Londres, en Reino Unido.
"La gravedad es de hecho la más débil de las fuerzas e incluso las fuentes astrofísicas más dramáticas sólo emiten ondas gravitacionales débiles".
Ahora, en Italia, los investigadores esperan hallarlas. Pero no será fácil.
La primera vez que se puso en marcha el experimento Virgo fue en 2007 y no logró ver nada. Otro laboratorio en Estados Unidos, el Observatorio de interferometría láser de ondas gravitacionales (LIGO, por sus siglas en inglés) tampoco tuvo suerte. Ambos instrumentos –llamados interferómetros– están siendo renovados y los equipos a cargo esperan que estas costosas actualizaciones permitan lograrlo.
Distorsiones leves
Lo que los investigadores están tratando de hacer es detectar las pequeñísimas distorsiones que se crean cuando las ondas gravitacionales pasan a través de la Tierra. Esperan ver las ondas emanadas por eventos cósmicos violentos, como la explosión de estrellas o el choque de agujeros negros. El detector Virgo está formado por dos túneles idénticos de 3 km distribuidos en forma de L. El proceso comienza con la generación de un rayo láser que luego se divide en dos: uno es impulsado a través de un túnel y la otra mitad por el otro. Un espejo en cada túnel hace rebotar a los rayos láser muchas veces hasta que se vuelven a recombinar. Puede parecer una estrategia elaborada, pero aprovecha una propiedad muy útil del láser: el hecho de que son rayos intensos de luz. Y, la luz, es una onda. Ahora, imagínate que dos olas en el océano chocan una contra otra. Mientras una está en su punto más alto, la otra está en su punto de depresión. Así pueden cancelarse la una a la otra. Lo mismo puede ocurrir dentro del experimento. Si las ondas viajaron exactamente a la misma distancia por los dos túneles, se cancelan y no producen ninguna señal. Sin embargo, si una onda ha viajado a través del túnel distorsionará sutilmente su entorno, cambiando la longitud de los túneles en una cantidad diminuta (sólo una fracción del ancho de un átomo). Y la forma en que las ondas se mueven a través del espacio significa que un túnel se estirará y el otro se encogerá, lo cual hará que un rayo láser viaje una distancia levemente mayor, mientras que el otro hará un viaje más corto. Como resultado, los rayos divididos se recombinarán de una manera diferente: las ondas de luz interferirán entre sí en vez de cancelarse y los científicos podrán detectar entonces una señal.
Colaboración
Sin embargo, una señal en Italia no es suficiente. Si allí se logra detectar una onda gravitacional, también la deberían encontrar el proyecto LIGO, en EE.UU., cuyo instrumento es similar al de Virgo y también otro experimento un poco más pequeño en Alemania. LIGO ya está funcionando y Virgo entrará en acción a fines de este año. Ambos equipos están tan confiados en que los experimentos serán un éxito que creen que el descubrimiento se hará exactamente el 1º de enero de 2017. Si las ondas no se presentan quiere decir que hace falta rediseñar los experimentos. Y, en el peor de los casos, puede que los físicos se vean obligados a repensar en cómo funciona el Universo. Pero una observación directa abrirá una nueva ventana al Cosmos, una que no hubiese sido posible sin Einstein.

 

 

 

diumenge, 2 de novembre del 2014

L'HIVERN NUCLEAR. INTERESANT CONCEPTE HISTÒRIC

Dintre de l'aniversari de la publicació de la teoria de "Hivern nuclear", val la pena recordar el que va significar en el seu moment la tensió entre els grans blocs oposats de la "guerra freda" entre els anys 60-80. També és molt important considerar quin es el paper que la CIÈNCIA i, en especial, els científis, juguen, han jugat i poden jugar, quan simplement diuen el que pensen (que, per cert, és o deuria ser la seua obligació).
Recordeu també aquella frase memorable del gran geni A. Einstein: "Si la tercera guerra mundial es fa amb armes nuclears, la quarta es farà amb pals i pedres".

Ací teniu un article molt interesant al respecte:
http://www.agenciasinc.es/Opinion/Treinta-anos-del-invierno-nuclear-que-enfrento-a-Sagan-contra-Reagan

diumenge, 11 de maig del 2014

Espectacular entrelazamiento cuántico entre fotones en tres lugares distintos


Un equipo de investigadores del IQC (Institute for Quantum Computing) en la universidad de Waterloo, Canadá, han demostrado la distribución de tres fotones entrelazados cuánticamente.

Antes de nada ¿qué es el entrelazamiento cuántico?
Einstein lo describía como "acción fantasmal a distancia". Es un fenómeno cuántico, en el cual los estados cuánticos (estado físico) de varios objetos se pueden describir mediante un estado único, aunque éstos se encuentren separados a una gran distancia. Esto conlleva a correlaciones entre las propiedades físicas, estas correlaciones hacen que las medidas realizadas sobre un sistema parezcan estar influyendo instantáneamente en otros sistemas enlazados con él.
Esta teoría es contraría al principio de realismo local, el cual dice que cada partícula debe tener un estado bien definido, sin que se tenga que hacer referencia a otros sistemas distantes.

Pero los físicos de la IQC han demostrado mediante la medición de estas correlaciones que, las particulas entrelazadas cuánticamente pueden influirse mutuamente en sus estados, aunque estén separadas por grandes distancias.
El experimento que realizaron se basaba en separar fotones entrelazados de una manera que una señal no coordinase el comportamiento de éstos, por lo tanto, mediante remolques que contenían todo tipo de material científico, midieron cómo se comportarían tales fotones. Esto demostró que las partículas seguían entrelazadas cuánticamente pese a estar separadas por varios metros de distancia.


Aquí os dejo indicado el link del artículo: http://noticiasdelaciencia.com/not/10136/espectacular_entrelazamiento_cuantico_entre_fotones_en_tres_lugares_distintos/  y para más información la página web de la universidad de Waterloo donde explica el experimento más detalladamente: https://uwaterloo.ca/news/news/experiment-opens-door-multi-party-quantum-communication